食用菌液体深层发酵技术与应用


液体发酵技术属于现代生物技术之一。深层发酵技术直接生产食用菌细胞,同时获得富含氨基酸等营养物质的发酵液。深层发酵培养基的选择1、食用菌液体深层发酵技术研究的关键是培养基。不同的食用菌需要用不同的培养基进行培养,因此培养基的选择和制备是食用菌液体深层发酵技术的关键。食用菌深层液体发酵生产主要采用抗生素生产工艺和设备,工艺流程大致为:母种-一级种子-二级种子-发酵罐深层发酵。根据培养基的组成,可分为天然培养基和合成培养基。天然培养基的成分都是天然有机物,而合成培养基则使用一些已知化学成分的营养物质作为培养基。无论何种培养基,其组成都离不开碳源、氮源和无机盐。微量元素、维生素和生长激素。 2、选择培养基应注意的问题(1)氮源过多会导致菌丝生长过于旺盛,不利于代谢产物的积累。碳源不足容易造成菌体老化自溶。碳氮比例不当会影响菌丝按比例吸收养分的能力。 (2)同一原料因产地不同,营养成分不同,在氮源中表现更为明显,如大豆、玉米浆、蛋白质等,产地、批号、必须记录每种原材料的生产工厂。并分析原材料的化学成分。 (3)水质对发酵生产也有很大影响。自来水、地表水、河水、汇合水、雪水等,溶解氧、金属离子、PH值等均有差异。此外,有些水中还含有较多的氯离子。因此,应对水质进行化学分析。 (4)高温(或高压)灭菌会引起某些营养物质的破坏,特别是还原糖、氨基酸和多肽一起加热时,会形成羟甲基糠醛和黑素等物质。赖氨酸最容易与糖反应形成棕色物质。选择培养基和灭菌时应提前考虑这些。食用菌摇瓶培养将食用菌亲本接种于灭菌后的锥形瓶培养液中,置于摇床上进行摇瓶培养。这种培养方法是摇瓶培养。摇瓶培养的菌丝体呈球形、絮状等多种形状。培养液可为糊状、液体等状态,可有或无清香及其他异味。菌液中有菌种发酵产生的次级代谢产物,呈不同颜色。摇瓶培养法一般用于菌株的初始培养或生理世代的研究。摇瓶培养中影响菌丝体和次级代谢产物产生的因素包括:培养温度、摇床的摇动频率、瓶子的填充系数、pH值、菌龄、接种量、培养液的粘度和光照。食用菌发酵罐深层培养发酵罐深层培养具有生产周期短、产量高、效益高等优点,是食用菌规模化生产的重要途径。 1、深层发酵通用设备。深层发酵生产需要不断向发酵罐内输入无菌空气,以保证耗氧量,并保持罐内一定的压力,防止外界细菌的侵入。发酵生产必须具备以下设备: (1)杀菌消毒设备杀菌的方法很多,但在食用菌发酵生产中,多采用“空消毒、实消毒”的杀菌形式:空消毒就是空消毒。发酵罐和管道的消毒。真正的灭菌是指将培养基放入发酵罐中,用高压蒸汽灭菌。它的优点是只需要蒸汽发生器等专业设备,操作比较简单。它的缺点是灭菌温度高,时间长,所以培养基容易过热,导致营养物质被破坏。 (2)空气净化设备发酵生产要求进入罐内的空气必须是洁净无菌的干燥空气。由于空压机输出的空气温度高,含有细菌、油、水等,必须经过处理后才能使用。进入水箱。压缩空气在生产中的净化过程大同小异,处理方法大多是:(1)压缩空气经过冷却器降温。 (2)通过油水分离器,去除空气中的大部分油水。

(3) 空气进入一个大容积的储气罐,储气罐可以进一步冷却压缩空气,第二可以缓冲和平衡整个空气系统的压力。 (4) 通过冷却器和用棉塞介质堵塞的去污剂。 (5) 空气进入总过滤器过滤除菌。压缩空气的净化过程是先经过一个主过滤器(其过滤介质必须定期用高压蒸汽灭菌),再经过一个小的副过滤器,再经过过滤灭菌。 (3)发酵生产设备食用菌的发酵生产多采用二次发酵和三次发酵。如果按接种量10%计算,最终使用的发酵罐为:一级种子罐50升,二级种子罐500升。发酵罐5000升。种子罐100升,发酵罐1000升。一般两个以上的种子罐配一个发酵罐,这样一旦一个种子罐被污染,就有另一个种子罐备用。种子罐容积越小,摇瓶菌种的接种量越小,杂菌污染的机会就越小。如果使用10L或25L发酵罐,多采用三段发酵,则10L发酵罐对应的二级种子罐(按75%计算)为750m1,一级种子罐为75ml。同样,25L发酵罐对应1800m1二级种子罐和180ml初级种子罐。 (4)后处理设备在深层液体发酵中,后处理设备种类繁多,选择何种设备取决于不同的菌种和所得产品的需要。食用菌液体菌种用于栽培生产时,只需将菌液装入灭菌后的密闭容器中,无需进行后处理;如果目标产物是菌丝体,先用板框压滤机、离心机等分离发酵液中的菌丝体,然后烘干,粉碎后得到菌体干粉。如果要得到不含菌丝体的发酵液,将过滤或压滤后的发酵液通过薄膜浓缩器或真空浓缩器得到浓缩液,再放入三明治蒸煮锅中进一步得到糊状物,如果目标产物是菌株或发酵中的某种次级代谢产物,则必须以次级代谢产物为准

物的不同提取工艺选择蒸煮罐离子交换器,萃取罐等设备。

  深层发酵生产的有关参数

  深层发酵生产与摇瓶液体培养是完全不同的培养方式。摇瓶试验中得到的代谢曲线及各种参数,只能供发酵生产时参考。在摇瓶试验中可以得到的菌丝含量及次生代谢产物含量,一旦放大到发酵罐中试验,条件可完全一致。所以,深层液体发酵时,应参照发酵罐生产的有关参数控制生产。参数为物理参数及生物参数,物理参数有温度、压力、搅拌速度、空气流量、溶解氧、排气中氧及二氧化碳含量等;化学参数有pH值、糖、氧及次生代谢产物的含量等。生物参数包括菌丝形态、发酵液中菌体含量等。

  1、  物理参数

  (1)温度  可影响发酵过程中基质的反应速率及氧的溶解度。温度和菌体代谢、代谢产物的产生有密切的关系。不同的菌种及同一菌种在不同的代谢阶段,其适宜的温度也不同,温度可从温度自动显示器或从温度计中读出。

  (2)压力  发酵罐内维持一定的压力可控制压力为0时杂菌的污染,并且可增加溶液中的溶解氧。但二氧化碳在水中的溶解度比氧大很多,因此罐压不宜太高,食用茵的发酵生产,罐压一般控制在0.3—0.5MPa左右,罐压可在压力表上显示。

  (3)搅拌速度  提高罐体搅拌器的搅拌速度可增强培养液中氧的溶解速率,还可破碎菌体,有利菌丝增殖。但转速过高,菌体机械破坏过大,也不利于菌丝生长、转速可通过改变变速电动机来调节。

  (4)空气流量  无菌空气是食用菌发酵生产中氧的来源。不同菌种及同一菌种在不同的生长阶段所需要的通气量不同。培养基装量愈多,通气情况愈差,菌丝生长也愈慢。如增加通气量,可提高菌丝体产量。实践证明,灵芝的菌丝生长对氧气的要求要比其它食用菌高一点。一般采用空气流量为0.5:1—1:1V/Vmin。

  (5)溶解氧  发酵过程中的溶解氧浓度大小和氧的传递速率与菌株的耗氧相关。溶解氧用于了解发酵菌株对氧的利用规律,指示发酵的异常情况。溶解氧用插入发酵液中的溶解氧电极测定。

  (6)排气中氧及二氧化碳含量  测定排气中氧的含量,可以计算出菌体耗氧率。测定排气中二氧化碳,再结合产生菌的耗氧率,可以了解菌体的呼吸规律。

  2、化学参数

  (1)pH值  发酵液的pH值是发酵过程中各种生化反应的综合指标。了解该值的变化规律,可了解茵体的生长规律及代谢特征,pH值一般通过取样测定。

  (2)糖  发酵液中总糖和还原糖的变化规律,可通过化学测定法测得。通过对还原糖的变化规律的分析可了解菌体对碳源的吸收利用情况,而发酵液中多糖的含量高低是反应发酵好坏的一个指标。

  (3)氧  发酵液中氨基氯的变化显示出发酵液中氮源的变化规律,其含量的测定主要是通过取样后采用化学方法进行测定。但随着发酵工业中的膜分离技术的推广,将代替以前那复杂而繁琐的化学方法。

  (4)次生代谢产物  如果发酵生产的目的产物是某种次生代谢产物,那么通过对该产物的化学测定,可判断次生代谢产物与菌体生长关系以及与各参数之间的联系,为确定最佳生产工艺提供科学依据。

  3、生物参数

  (1)菌丝形态  通过发酵的取样液的镜检,观察菌丝形态的变化,从中可以了解菌丝的长势及是否已经衰老或自溶。

  (2)  菌丝含量  可通过菌丝含量的测定,了解菌丝生长状况以及和各参数之间的关系。为确定最佳生产条件及生产工艺也提供了科学依据。

  4、  深层发酵生产中某些参数的控制

  由于各参数之间存在内在的联系,所以实际生产中对发酵过程的控制,主要是对以下几个参数的控制。

  (1)温度的控制

  发酵过程中,影响发酵液温度变化的因素很多。温度是各因素综合作用的结果。  菌体生长代谢过程中会消耗养分,释放能量。其中一部分能量供自身消耗,一部分则以热的形式散发出来,称为生物热(Q生物) 。

  搅拌是因机械摩擦产生热,称为搅拌热(Q搅),发酵液中水会蒸发会吸收热,称蒸发热(Q蒸),排出气体会带走热量,称显热(Q显) 。

  发酵罐内外温度不同,发酵液中有部分热通过罐体向外辐射,称辐射热(Q辐射)  因此,发酵液中体现温度变化的发酵热(Q发酵)应该符合下述公式:

  Q发酵=Q生物+Q搅拌-Q蒸发-Q显-Q辐射

  如果发酵过程中,温度出现异常情况,可根据此公式,进行相应的调整。

  一般情况下,控制发酵生产的温度均采用往发酵罐夹层中注入热水或冷水的方式升温或降温,比较先进的控温设备是由电脑控制的。

  (2)溶氧浓度的控制

  溶氧浓度是发酵生产中十分敏感的一个参数,由于影响供氧及耗氧的因素都会使发酵液中溶氧浓度发生变化,所以通过溶氧浓度的变化来了解发酵过程中菌丝生长及生化反应变化是十分有效的。如果设备的供氧不变,那么溶解氧的变化就反映出发酵菌体呼吸量的增减。一般情况下,在发酵前期,由于菌体大量繁殖,耗氧增加,表现为溶氧浓度明显下降,到了中期,溶氧浓度逐渐回升,发酵后期,耗氧减少,溶氧上升。一旦菌体自溶,溶氧浓度明显上升。菌液中的溶氧浓度,除了和通气量密切相关外,还和氧在液体中的溶解及传递相关联。而氧的传递和溶解,也受到某些因素的制约。如温度越低,氧的溶解度越高。搅拌速度增快,有助于溶氧浓度的增加,培养基中溶质越多,氧的溶解度越小等。

  由于无法测定菌体中的溶氧浓度,则无法提供每一时期精确的通气量,在食用茵的发酵生产中,采取了前期通气量小,中期通气量大,后期通气量小的方式,小通气量,一般为0.5V/Vmin,大通气量一般为1.5V/Vmin。

  (3)搅拌速度的控制

  通过搅拌,能把从空气分布管中引入的空气力成气泡,增加气—液的接触面积,从而增加氧的传递还可使液体形成涡流,延长气泡在液体中的停留时间,增加液体的湍动程度,降低气泡周围的液膜E力,增大氧的传递系数,此外,还可减少菌丝结团现象,改善细胞对氧的吸收。

  据报道,在食用菌液体深层培养中,采用通气搅拌的方式比机械搅拌好;采用间歇搅拌方式比连续搅拌效果更好。

  搅拌速度大,溶解氧就多,但过大的搅拌速度,对菌体的破坏会很厉害。显然,对某些菌种,由于搅拌带来的破坏作用将超过因镕氧增加带来的促进生长作用,因此不搅拌反而更好。搅拌速度的快慢,因菌株不同而异。如果灵芝菌的深层培养,搅拌不仅影响菌丝的形态,还影响灵芝多糖的产生。随着搅拌速度的提高,灵芝胞外多糖的产量增加,而胞内多糖的产量下降。

  (4)pH值的控制

  当了解到菌株在发酵各时期的合适pH值后,就应想办法满足其对酸碱度的要求。首先可以考虑在培养基配方中加入某物质以维持pH值的恒定。此外,还可以通过补料的方式来调节pH值。

  (5)泡沫的控制

  泡沫是深层发酵的最大障碍,它不仅造成大量跑液,浪费原料,还增加污染机会。消除泡沫的方法有机械消沫及加消沫剂两种方法。

  机械消沫法是在搅拌轴上方安装消沫器,形式多样,但效率都不高,特别是对粘性液态泡沫几乎不起作用。消沫剂有天然油脂类:高碳醇、脂肪酸和酯类;聚醚类;硅酮类等四大类。

  生产上并非一见泡沫就用消泡剂,有时通过减少通气量,停止搅拌等方式亦能控制泡沫,改变培养基的成分,亦是减少泡沫的较佳办法。总之,应摸清产生泡沫的原因,有针对性地采取最佳消沫方式,尽可能少用消沫油或消沫剂。

  发酵终点的判断

  在以菌丝为目的物的发酵生产中,将以菌丝体的得串为控制指标,发酵终点的判断以菌丝形态、数量以及养分的消耗和代谢的变化作为指标。

  1、  形态观

  (1)菌丝镜检  在深层培养的早期和中期,菌丝粗状,分枝较少,着色深,有锁状联合。而后期菌丝变细,并有大量分枝产生,色浅,出现较多空泡,少量存在锁状联合,这是菌丝衰老的象征,应在此之前放罐。

  (2)菌球观察  菌丝疏松或紧密地集合在一起,或网状,肉眼观察即为菌球。菌球已经中空,表明菌球中部菌丝已老化,部分菌丝自溶,菌球变得光滑,菌球的额色由浅变深,也是老化的象征。

  (3)菌丝含量测定  选择菌丝含量不再增加前的某一时刻放罐,是一个比较容易掌握的控制指标。

  在实际生产及试验中一般以菌丝含量达到某一定值为指标,再结合菌丝及菌球的观察结果为参考指标,判断是否到发酵终点。

  2、  食用菌深层培养中代谢变化

  在发酵过程中pH值、氨基氮、糖及其他有效成分含量都随菌龄的变化而变化,根据上述数据的变化,制作一条代谢曲线,此曲线对指导发酵生产的进行,确定发酵终点有重要作用。但对于以次生代谢产物为目的产物的深层发酵时,一般都在目的产物达到最大值时才终止发酵。

  应用前景与展望

  利用食(药)用菌液体发酵可以在较短时间内获得大量菌丝体及其发酵产物,由于这一过程周期短、产量高、成本低、工艺设备简单,因此在食用菌生产中具有广阔的应用前景。食(药)用真菌在深层培养过程中会产生多糖、多肤、生物碱、萜类化合物、甾醇、酶、核酸、维生素、具抗生素作用的多种化合物以及植物激素等多种生理活性物质,这些物质分别具有对心血管、肝脏、神经系统、肾、性等人体器官的防病治病作用以及抗癌、消炎、抗衰老、抗菌、提高免疫力等功效。目前食用菌液态发酵正在大量研究开发中,除了应用于医药工业外还应用于液体菌种和食品饮料工业中。由于用工业化液体发酵来生产食用菌蛋白质,要比饲养家禽或家畜来获取蛋白质的时间短、效率高、成本低,因此,食用菌的深层发酵在食品加工方面将有很大的发展前途,它将成为21世纪人类所需的主要蛋白质的原料之一。

  随着科学技术的发展,尤其是微生物学、蕈菌学、发酵工艺学和工程学的相互渗透和交叉,特别是发酵产物分离技术的发展,使食用菌液体发酵技术应用更广泛、前景更宽阔。(江苏食用菌网)

标签:
  • 学习菌种选育
  •  
  • 菌种选育技巧
  • 更多栏目最新
    菌种培养基的配制原则
    菌种培养基的配制原则
    根据食用菌对营养、水分和pH值的要求配制的培养料即为培

    推荐网购省20%-90%神器免费领!